Home    People    Research    Publications    News    Events


Chemical Biology and Molecular Medicine at IISc, Bangalore


  1. NaveenKumar, S. K.; Sharathbabu, B. N.; Hemshekhar, M.; Kemparaju, K.; Girish, K. S.; Mugesh, G. The Role of Reactive Oxygen Species and Ferroptosis in Heme-Mediated Activation of Human Platelets. ACS Chem. Biol. 2018, 13, 1996 – 2002.

  2. Ungati, H.; Govindaraj, V.; Mugesh, G. The Remarkable Effect of Halogen Substitution on the Membrane Transport of Fluorescent Molecules in Living Cells. Angew. Chem. Int. Ed., 2018, 57, 8989 - 8993.

  3. Singh, N.; Geethika, M.; Eswarappa, S. M.; Mugesh, G. Manganese-based Nanozymes: Multienzyme Redox Activity and Effect on the Nitric Oxide Produced by Endothelial Nitric Oxide Synthase. Chem. Eur. J. 2018, 24, 8393 – 8403.

  4. Ghosh, S.;Roy, P.; Karmodak, N.; Jemmis, E. D.; Mugesh, G. Nanoisozymes: Crystal Facet-Dependent Enzyme Mimetic Activity of V2O5 Nanomaterials. Angew. Chem. Int. Ed., 2018, 57, 4510 - 4515.

  5. Sarikhani, M.; Mishra, S.; Maity, S.; Kotyada, C.; Wolfgeher, D.; Gupta, M.P.; Singh, M.; Sundaresan, N.R. SIRT2 deacetylase regulates the activity of GSK3 isoforms independent of inhibitory phosphorylation. eLife 2018, 7, e32952.

  6. Sarikhani, M.; Mishra, S.; Desingu, P.A.; Kotyada, C.; Wolfgeher, D.; Gupta, M.P.; Singh, M.; Sundaresan, N.R. SIRT2 regulates oxidative stress-induced cell death through deacetylation of c-Jun NH2-terminal kinase. Cell Death Differ. 2018, 25(9):1638-1656.

  7. Gogoi, M.; Chandra, K.; Sarikhani, M.; Ramani, R.; Sundaresan, N.R.; Chakravortty, D. Salmonella escapes adaptive immune response via SIRT2 mediated modulation of innate immune response in dendritic cells. PLoS Pathog. 2018,14(11):e1007437.

  8. Spurthi, K.M.; Sarikhani. M.; Mishra. S.; Desingu, P.A.; Yadav, S.; Rao, S.; Maity, S.; Tamta, A.K.; Kumar, S.; Majumdar, S.; Jain, A.; Raghuraman, A.; Khan, D.; Singh, I.; Samuel, R.J.; Ramachandra, G.S.; Nandi, D.; Sundaresan, N.R. Toll-like receptor 2 deficiency hyperactivates the FoxO1 transcription factor and induces aging-associated cardiac dysfunction in mice. J Biol Chem. 2018, 293(34):13073-13089.

  9. Sarikhani, M.; Maity, S.; Mishra, S.; Jain, A.; Tamta, A.K.; Ravi, V.; Spurthi, K.M.; Desingu, P.A.; Khan, D.; Kumar, S.; Rao, S.; Inbaraj, M.; Shriniwas, P.A.; Sundaresan, N.R. SIRT2 deacetylase represses NFAT transcription factor to maintain cardiac homeostasis. J Biol Chem. 2018, 293(14):5281-5294.

  10. Khan, D.; Sarikhani, M.; Dasgupta, S.; Maniyadath, B.; Pandit, A.S.; Mishra, S.; Ahamed, F.; Dubey, A.; Fathma, N.; Atreya, H.S.; Kolthur-Seetharam, U.; Sundaresan, N.R. SIRT6 deacetylase transcriptionally regulates glucose metabolism in heart. J Cell Physiol. 2018, 233(7):5478-5489.

  11. Jain, A.; Ravi, V.; Muhamed, J.; Chatterjee, K.; Sundaresan, N.R. A simplified protocol for culture of murine neonatal cardiomyocytes on nanoscale keratin coated surfaces. Int J Cardiol. 2017, 232:160-170.

  12. Ray, L. C.; Das, D.; Entova, S.; Lukose, V.; Lynch, A. J.; Imperiali, B.; Allen, K. N. Membrane Association of Monotopic Phosphoglycosyl Transferase Underpins Function. Nature Chem. Biol. 2018, 14, 538-541.

  13. Das, D.; Kuzmic, P; and Imperiali, B. Analysis of a Dual Domain Phosphoglycosyl Transferase Reveals a Ping-Pong Mechanism with a Covalent Enzyme Intermediate.  Proc. Natl. Acad. Sci. U.S.A., 2017, 114, 7019-7024.

  14. Das, D.; Ellington, B.; Paul, B.; and Marsh, E. N. G. Mechanistic Insights from Reaction of α-Oxiranyl-Aldehydes with Cyanobacterial Aldehyde Deformylating Oxygenase. ACS Chem. Biol., 2014, 9, 570-577.

  15. Paul, B.; Das, D.; Ellington, B.; and Marsh, E. N. G. Probing the Mechanism of Cyanobacterial Aldehyde Decarbonylase Using a Cyclopropyl Aldehyde.  J. Am. Chem. Soc., 2013, 135, 5234-5237.

  16. Das, D.; Eser, B. E.; Han, J.; Sciore, A.; and Marsh, E. N. G. Oxygen-independent Decarbonylation of Aldehydes by Cyanobacterial Aldehyde Decarbonylase: a New Reaction of Di-iron Enzymes. Angew. Chem. Int. Ed., 2011, 50, 7148-7152.

  17. Verma, P. K.; Mandal, S. Geetharani, K. Efficient Synthesis of Aryl Boronates via Cobalt-Catalyzed Borylation of Aryl Chlorides and Bromides. ACS Catal. 2018, 8, 4049-4054.

  18. Baishya, A.; Baruah, S.; Geetharani, K. Efficient Hydroboration of Carbonyls by Iron(II) Amide Catalyst. Dalton Trans. 2018, 47, 9231-9236.

  19. Segavi, M. L.; Baishya, A.; Bose, S. K.; Geetharani, K. Reusable Fe2O3-nanoparticle catalysed efficient and selective hydroboration of carbonyl compounds. Org. Chem. Front. 2018, 5, 3520-3525.

  20. Mandal, S.; Verma, P. K.; Geetharani, K. Lewis acid catalysis: regioselective hydroboration of alkynes and alkenes promoted by scandium triflate. Chem. Commun., 2018, 54, 13690-13693.

  21. Verma, P. K.; Setulekshmi, A. S.; Geetharani, K. Markovnikov-Selective Co(I)-Catalyzed Hydroboration of Vinylarenes and Carbonyl Compounds. Org. Lett., 2018, 20, 7840-7845.

  22. Mondal, S.; Yetra, S. R.; Mukherjee, S.; Biju, A. T. NHC-Catalyzed Generation of a,b-Unsaturated Acylazoliums for the Enantioselective Synthesis of Heterocycles and Carbocycles. Acc. Chem. Res. 2019, 52, In Press (DOI: 10.1021/acs.accounts.8b00550).

  23. Bhojgude, S. S.; Bhunia, A.; Biju, A. T. Employing Arynes in Transition-Metal-Free Carbon-Carbon and Carbon-Heteroatom Bond-Forming Reactions. Acc. Chem. Res. 2016, 49, 1658.

  24. Holme, M.N.;# Rana, S.;# Barriga, H.M.G.; Kauscher, U.; Brooks, N.J.; Stevens, M.M. A robust liposomal platform for direct colorimetric detection of sphingomyelinase enzyme and inhibitors. ACS Nano 2018, 12, 8197-8207. #Equal contribution

  25. Soh, J.H.; Lin, Y.; Rana, S.; Ying, J.; Stevens, M.M. Colorimetric detection of small molecules in complex matrices via target-mediated growth of aptamer-functionalized gold nanoparticles. Anal. Chem. 2015, 87, 7644-7652.

  26. Rana, S.;* Elci, S.G.; Mout, R.; Singla, A.K.; Yazdani, M.; Bendur, M.; Bajaj, A.; Saha, K.; Bunz, U.H.F.; Jirik, F.R.; Rotello, V.M.* Ratiometric array of conjugated polymers−fluorescent protein provides a robust mammalian cell sensor. J. Am. Chem. Soc. 2016, 138, 4522-4529.

  27. Rana, S.; Le, N.D.B.; Mout, R.; Saha, K.; Tonga, G.Y.; Bain, R.E.S.; Miranda, O.R.; Rotello, C.M.; Rotello, V.M. A multichannel nanosensor for instantaneous readout of cancer drug mechanisms. Nature Nanotechnol. 2015, 10, 65-69.

  28. Rana, S.; Le, N.D.B.; Duncan, B.; Elci, S.G.; Mout, R.; Rotello, V.M. A multichannel biosensor for rapid determination of cell surface glycomic signatures. ACS Cent. Sci. 2015, 1, 191-197.

  29. Chen. K.; # Rana, S.;# Moyano, D.F.; Xu, Y.; Guo, X.; Rotello, V.M. Differentiation of protein isoforms using gold nanoparticles through controlled ligand hydrophobicity. Nanoscale 2014, 6, 6492-6495. #Equal contribution

  30. Yeh, Y.-C.; Rana, S.; Mout, R.; Yan, B.; Alfonso, F.S.; Rotello, V.M. Supramolecular tailoring of protein–nanoparticle interactions using cucurbituril mediators. Chem. Commun. 2014, 50, 5565-5568.

  31. Tang, R.; Kim, C.S.;# Solfiell, D.J.;# Rana, S.;# Mout, R.; Velázquez-Delgado, E.M.; Chompoosor, A.; Jeong, Y.; Yan, B.; Zhu, Z.-J.; Kim, C.; Hardy, J.A.; Rotello, V.M. Direct delivery of functional proteins and enzymes to the cytosol using nanoparticle-stabilized nanocapsules. ACS Nano 7, 6667-6673 (2013). #Equal contribution

  32. Rana, S.; Singla, A.K.; Bajaj, A.; Miranda, O.R.; Yan, B.; Jirik, F.R.; Rotello, V.M. Array-based sensing of metastatic cells and tissues using nanoparticle-fluorescent protein conjugates. ACS Nano 2012, 6, 8233-8240. 

  33. Rana, S.; Yu, X.; Patra, D.; Moyano, D.F.; Miranda, O.R.; Hussain, I.; Rotello, V.M. Control of surface tension at liquid-liquid interfaces using nanoparticles and nanoparticle-protein complexes. Langmuir 2012, 28, 2023-2027.

  34. Rana, S.; Bajaj, A.; Mout, R.; Rotello, V.M. Monolayer coated gold nanoparticles for delivery applications. Adv. Drug Deliv. Rev. 2012, 64, 200-216.

  35. De, M.; Rana, S.; Akpinar, H.; Miranda, O.R.; Arvizo, R.R.; Bunz, U.H.F.; Rotello, V.M. Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein. Nature Chem. 2009, 1, 461-465.